Four Days

compiled by John McCreesh

SOME RIGHTS RESERVED

Table of Contents

INEIOAUCHON.eeeeeeeeeeeerneeeerneeenrteeessteeesssseessssseessssasessssasesssssssssssassssssessssssesssssassssasassssssassssssnesss 1
DAY 1 ON RAIIS..ccuuiiiiiiiirnnininiiennencssnetionsesessosses 3
The ToDO List aPPLCATION.....cciiiiiiiiiiiiiii s 3
Running the Rails SCIIPL. ...t 3
Adding the Application to the Web SEIVEr ... es 3
Defining the Application in the hosts file........ooiiiiiiiiiiiiiiic s 3
Defining the Application in the Apache Configuration file.......oeeueecueeeirereinecinicinicrecreceeeeeeneeenseeenne 4
SWILCHING TO FASLCEI..vuviiuiiiiiiiiii bbb 4
Checking that Rails 1S WOIKING. ..o sss s 4
Setting up the Database........ciiiiiii s 4
Creating the Cate@Ories TaDLE.......coicuiiiiiceice et 4
MYSQL A IITON ¢ vuteeteectriectreetrietreeeteeet ettt ettt sttt b s sensesessesenacs 4

DAA MOAEL ...ttt 5
SCALEOL. ettt e ettt sttt 5
DAY 2 ON RAIIS..cuuuuiiiiieereniioiiirenmencssoneraaseeessosessesssssssssnssses 7
THE IMOAEL..c.oevitittiec R 7
Creating Data Validation RULES.........ccciiiiiiiiicrcrereecreeie e eaes 7
THE CONLOIET ..ottt ettt s st s et aesenseasaenen 8
The default CONLIONET.......cuieiiiicicic s 8
Tailoring the default CONLOIET ..o 9
THE VIEW .ottt bbbt 10
LLAYOUL ettt 10
TEMIPIALES..c..oeiiiiiiiici e 10
Displaying Errors trapped by the Data MOdel......cccieinicinienieiicicinieeeeeeeeisesciseeeseeeseeessesessesesnes 11
Creating a Form with minimal COdINg.......coiiiiiiiiiiiiiiiiiiii e 11
Creating LINKS ... 11
Tailoring the default ‘Edit’ VIEW.....ccociiiiiiiiiiiiiiiic s 11
Tailoting the default LUST VIEW.....ccvieuieeirieiiieiiieeieeieete et sesetsesess et ss et sssaesssaessssensssessssensssenas 12
Escaping HTML CRaraCters. ... sssasssssssssssssssssssssssssssssssnns 12

Using Ruby to format Date and TIME.....cccuveuieuieeiciieieiieeeiecie et ssese e sesessesessesenses 12
Creating a Javascript confirmation DIalogUe..........ocicuiiiiiiiiiiiiiiiccece e 13

LD 23 T 03 1 1) 2 T PSR 15
The TtemSs” TADIE......uoiiieieieict e e 15
MYSQL taDle AEIINTION. ..cuvterieieeierrieieietreeeie ettt seeseieseeses st sest e sestse et besese b ssesesesessaseacsenssnencans 15
THE MOGEL...oieiiiiice ettt ettt e et 15
Validating Links between Tables.........cc.oiiiiiiiicicccee e 16
Validating USer INPUL.....cciiiiiiiiiiii bbb ss s ssae b ssaes 16

MOLE ON VIEWS....vviiviiiteietesese et sttt st a bR bR bR bR bbb bbbt b st 16
Sharing Variables between the Templates and the Layout.........ccniniciiii e 16
The TOIDO LISt SCIEEMN....ocvirieiieieictetet ettt s a s 17
Purging completed “ToD0s’ by clickiflg Ol A0l ICOM.uuvvuerieirieiricirieiree et eesennes 18
Changing the Sort Order by clicking on the Column Headings.........ccocvieuviiiiniiinininiiiniviiiicisicicenenns 18
AQAING @ HEIPEL ...ttt ettt enaes 19

Using Javascript Navigation BUttonS......ccciiiiiiiicc s 19
Partials — SUD-TEMIPIALES.....cuvcriciriciieirieirecr ettt 19
Formatting based 0n Data ValUES.........ccoiiiiiiiiiii s sasssssens 20
Handling missing Values i @ LOOKUP......cvvuerieeniieiniierciecieete ettt ssesesseaesseaesseaesseaesssaes 20

The NEeW TODO SCIEEN.....cciiiiiiiiiiict bbb bbb 21
Creating a Drop-down List for a Date Field........cociiiiiiciciceecececeeeeeeese e 22
Creating a Drop-down List from a Lookup Table.......ccccviiiiins 22
Creating a Drop-down List from a List Of CONSTANLS........ceueuemierinierereieireieeciseeeeeeseeeseese e eeaeseeseseeseseeans 22
Creating @ CheCKDOX ...ttt 22
CONLIONLT ...ttt R R s a R 22

FINISHING TOUCHES ..ecvniiinieciicee e et eee 23

Tailofing the StYlEShEEt.. ..ot s 23

The Edit TODO SCLEEN. ..ottt sttt s e saesenacs 23
DAy 4 ON RaAIIS...cciiiiiiiiiniinrnnnnaeeeetiiiieccssassssssssssssssssssssssse 25
ThE INOLES” TADLE......euveirieiieciieiiie ettt ettt ettt ea s naces 25
THE MOAEL...eiii et 25
Using a Model to maintain Referential INte@rity......coceerrercurecurieirieirieirierieireesseieeseeeeese e seseesesensees 25

THE VIEWS.ce.oiiuiieiieiiiiii ittt 25
Transferring the User between CONtIOLErS........ccieuieiicinieiieieieeeeeieee e ssesennes 25
Saving and retrieving Data using Session Variables........coeiiiiiniiiiiiiicicieeesseesscenceens 28
TIAYING UP NAVIZATION.....eurieiieeiieciieetieeiriet ettt nsenenas 29
Setting the Home Page for the APPlCAtion........ccviciiiiiiiiniiiiiii s 30

Links on the HOME PAZE......ccciiiiiiiiicc ittt saes 31
Downloading a Copy of this APPHCAION.......ccuiiiiiriiiii s 31

AN ALY e e et ettt 31

Introduction

There have been many extravagant claims made about Rails. For example, an article in OnLAMP.com' claimed
that “you could develop a web application at least ten times faster with Rails than you could with a typical Java
framework...” The article then goes on to show how to install Rails and Ruby on a PC and build a working
‘scaffold’ application with virtually no coding.

While this is impressive, ‘real’ web developers know that this is smoke and mirrors. ‘Real” applications aren’t as
simple as that. What'’s actually going on beneath the surface? How hard is it to go on and build ‘real’
applications?

This is where life gets a little tricky. Rails is well documented on-line — in fact, possibly too well documented for
beginners, with over 30,000 words of on-line documentation in the format of a reference manual. What’s
missing is a roadmap (railmap?) pointing to the key pages that you need to know to get up and running in Rails
development.

This document sets out to fill that gap. It assumes you’ve got Ruby and Rails up on a PC (if you haven’t got this
far, go back and follow Curt’s article). This takes you to the end of ‘Day 1 on Rails’.

‘Day 2 on Rails’ starts getting behind the smoke and mirrors. It takes you through the ‘scaffold’ code. New
features are highlighted in bold, explained in the text, and followed by a reference to either Rails or Ruby
documentation where you can learn more.

‘Day 3 on Rails’ takes the scaffold and starts to build something recognisable as a ‘real’ application. All the time,
you are building up your tool box of Rails goodies. Most important of all, you should also be feeling comfortable
with the on-line documentation so you can continue your explorations by yourself.

‘Day 4 on Rails’ adds in another table and deals with some of the complexities of maintaining relational integrity.
At the end, you’ll have a working application, enough tools to get you started, and the knowledge of where to

look for more help.

Ten times faster? after four days on Rails, judge for yourself!

Documentation: this document contains highlichted references, either to:

* Documentation — the Rails documentation at http://api.rubvonrails.com
* Ruby Documentation — “Programming Ruby - The Pragmatic Programmert's Guide” available online and for
download at http://www.ruby-doc.org/docs/ruby-doc-bundle /ProgrammingRubyv/index.html

Acknowledgements: many thanks to the helpful people on the the irc channel” and the mailing list’. The on-
live archives record their invaluable assistance as I clawed my way up the Rails and Ruby leaning curves.

Version: 1.7 using version 0.10 of Rails — see http://rails.homelinux.org for latest version and to download a
copy of the ToDo code.

Copyright: this work is copyright ©2005 John McCreesh jpmcc(@users.sourceforge.net and is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses /by-nc-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott
Way, Stanford, California 94305, USA.

1 Rolling with Ruby on Rails, Curt Hibbs 20-Jan2005 http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html

2 irc://irc.freenode.org/rubvonrails
3 http://lists.rubyontails.org/mailman /listinfo /rails

Page 1

http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.htm
http://creativecommons.org/licenses/by-nc-sa/2.0/
mailto:jpmcc@users.sourceforge.net?subject=Four Days on Rails
http://rails.homelinux.org/
http://lists.rubyonrails.org/mailman/listinfo/rails
file:///W:/OldToDo/doc/irc://irc.freenode.org/rubyonrails
http://www.ruby-doc.org/docs/ruby-doc-bundle/ProgrammingRuby/index.html
http://api.rubyonrails.com/

Day 1 on Rails
The ToDo List application

This document follows the building of a simple “ToDo List’ application — the sort of thing you have on your
PDA, with a list of items, grouped into categories, with optional notes (for a sneak preview of what it will look
like, see Illustration 4 Main "To Do' screen on page 17).

Running the Rails script

This example is on my MS-Windows PC. My web stuff is at c: \www\webroot, which I label as drive w: to cut
down on typing:

:\> subst w: c:\www\webroot
\> w:

:\> rails ToDo

:\> cd ToDo

:\ToDo>

===00

Running rails ToDo creates the following directory structure below ToDo\:

app
Holds all the code that's specific to this particular application.
app\controllers
Holds controllers which drive the program logic
app\models
Holds models which describe the data structures, validation and integrity rules,
@EC -
app\views
Holds the template files which form the basis of the rendered html pages. This
directory can also be used to keep stylesheets, images, and so on that can be
symlinked to public.
app\helpers
Holds view helpers (common pieces of code)
config
Configuration files for Apache, database, and other dependencies.
1lib
Application specific libraries. Basically, any kind of custom code that doesn't
belong in controllers, models, or helpers. This directory is in the load path.
log
Application specific logs. Note: development.log keeps a trace of every action Rails
performs - very useful for error tracking, but does need regular purging!
public
The directory available for Apache, which includes iamges, javascripts, and
stylesheets subdirectories
script
Helper scripts for automation and generation.
test
Unit and functional tests along with fixtures.
vendor
External libraries that the application depend on. This directory is in the load
path.

Adding the Application to the Web Server

As I'm running everything (Apache2, MySQL, etc) on a single development PC, the next two steps give a
friendly name for the application in my browser.

Defining the Application in the hosts file

C:\winnt\system32\drivers\etc\hosts (excerpt)
127.0.0.1 todo

Page 3

Defining the Application in the Apache Configuration file
Apache2\conf\httpd.conf

<VirtualHost *>
ServerName todo
DocumentRoot /www/webroot/ToDo/public
<Directory /www/webroot/ToDo/public/>
Options ExecCGI FollowSymLinks
AllowOverride all
Allow from all
Order allow,deny
</Directory>
</VirtualHost>

Switching to fastcgi

Unless you are patient (or have a powerful PC) you should enable fastcgi for this application
public\.htaccess

Change extension from .cgi to .fcgi to switch to FCGI and to .rb to switch to
mod_ruby
RewriteBase /dispatch.fcgi

Checking that Rails is working

The site should now be visible in your browser as http://todo/

Setting up the Database

I've set up a new database called ‘todos’ in MySQL. Connection to the database is specified in the
config\database.yml file

aJ config\database.yml (excerpt

development:
adapter: mysqgl
database: todos
host: localhost
username: foo
password: bar

Creating the Categories Table

The categories table is used in the examples that follow. It’s simply a list of categories that will be used to
group items in our ToDo list.

MySQL definition

Categories table

CREATE TABLE “categories’ (
"id® smallint (5) unsigned NOT NULL auto_ increment,
‘category’ varchar (20) NOT NULL default '',
‘created on’ timestamp (14) NOT NULL,
‘updated on’ timestamp (14) NOT NULL,
PRIMARY KEY (id7),
UNIQUE KEY ‘category key (category’)

) TYPE=MyISAM COMMENT='List of categories';

Some hints and gotchas for table and field naming:

+ underscores in field names will be changed to spaces by Rails for ‘human friendly’ names

+ beware mixed case in field names — some parts of the Rails code have case sensitivities

*+ every table should have a primary key called ‘id” - in MySQL it’s easiest to have this as numeric
auto_increment

+ links to other tables should follow the same ‘_id’ naming convention

Page 4

+ Rails will automatically maintain fields called created at/created on ofr updated at/updated on, soit’s
a good idea to add them in

Documentation: ActiveRecord::Timestamp

+ Useful tip: if you are building a multi-user system (not relevant here),Rails will also do optimistic locking if

you add a field called lock version (integer default 0).All you need to remember is to include

lock version as a hidden field on your update forms.

Documentation: ActiveRecord::Locking

Data Model

Generate an empty file:

| W:\ToDo>ruby script/generate model Category
which simply creates app\modules\category.rb

Scaffold

The controller is at the heart of a Rails application.

Running the generate

controller script

W:\ToDo>ruby script/generate controller category

which creates two files and two empty directories:

app\controllers\category controller.rb
app\helpers\category helper.rb

app\views\categories
app\views\layouts

If you haven’t already seen the model / scaffold trick in operation in a beginnet’s tutotial like Ro/ing with Ruby on
Rails, try it now and amazed yourself how a whole web app can be written in two lines of code:

app\controllers\ category controller.rb

class CategoryController < ApplicationController

model :category
scaffold :category
end

Point your browser at http://todo/category and be amazed at how clever it is :-)

Listing categories

Category

Horne 8 Farmily

Business

Rails
documentation

Cormrmunity
Council

Mew category

GCreated on
Sun Feb 06 15:56: 44
GMT Standard Time 2005
Sun Feb 06 15:57:00
GMT Standard Time 2005
Mon Feb 14 09:34:02
GMT Standard Time 2005

Mon Feb 14 09:34:34
GMT Standard Time 2005

Illustration 1: Scaffold screen

Updated on

Tue Feb 15 17:09: 59 .
Show Edit Destroy

GMT Standard Time 2005

T Feh 15 17:10:15 .
Lt Show Edit Destroy

GMT Standard Time 2005

Mon Feb 14 09: 34,02 SHaw B Da st

GMT Standard Time 20058

Mon Feb 14 09:34: 34 .
Show Edit Destroy

GMT Standard Time 2005

Page 5

Day 2 on Rails

To progress beyond this point, we need to see what’s happening behind the scenes. With the scaffold action,
Rails generates all the code it needs dynamically. By running scaffold as a script, we can get all the code written
to disk where we can investigate it and then start tailoring it to our requirements.

Running the generate scaffold script
W:\ToDo>ruby script/generate scaffold Category

This script generates a range of files needed to create a complete application, including a controller, views,
layouts, and even a style sheet:

app\controllers\categories controller.rb
app\helpers\categories helper.rb
app\views\categories\edit.rhtml
app\views\categories\list.rhtml
app\views\categories\new.rhtml
app\views\categories\show.rhtml
app\views\layouts\categories.rhtml
public\stylesheets\scaffold.css

Note the slightly bizarre naming convention — we've moved from the singular to the plural, so to use the new
code you need to point your browser at http://todo/categories.

The Model

The Model is where all the data-related rules are stored, including data validation and relational integrity. This
means you can define them once, and Rails will automatically apply them wherever the data is accessed.

Creating Data Validation Rules

Rails gives you a lot of error handling for free (almost). To demonstrate this, add some validation rules to the
empty Category model:

aj models\category.rb

class Category < ActiveRecord: :Base
validates_length_of :category, :within => 1..20
validates_uniqueness_of :category, :message => "already exists"
end

These entries will give automatic checking that:

* validates length of: the field is not blank and not too long
* validates uniqueness_of: duplicate values are trapped

Documentation: ActiveRecord::V alidations::ClassMethods

To try this out, try and insert a duplicate record (see I/ustration 2: Data Validation below). The style is a bit in
your face — it's not the most subtle of user interfaces. However, what do you expect for free?

Note: try the same test with the previous version http://todo/category version. The auto-rendered scaffold
code can’t cope with data validation. To prevent confusion, it’s probably safer to delete the
app\controllers\category controller.rb and app\helpers\category helper.rb files.

Page 7

New category

1 error prohibited this category from being saved

There were problems with the following fields:

m Category already exists

Categary

Created on

Updated on

Create |

Back

Hlustration 2: Data Validation

The Controller

Now it’s time to look at the controller. The controller is where the programming logic for the application lies. It
interacts with the user using views, and with the database through models. You should be able to read the
controller and see how the application hangs together.

The default Controller

The controller produced by the generate scaffold script is listed below

\app\controllers\categories controller.rb

class CategoriesController < ApplicationController
def index
list
render action 'list'
end

def list
@categories = Category.find all
end

def show
@category = Category.find(@params['id'])
end

def new
@category = Category.new
end

def create
@category = Category.new (@params|['category'])
if @category.save

flash['notice'] = 'Category was successfully created.'
redirect to :action => 'list'

else
render action 'new'

end

end

Page 8

def edit
@category = Category.find(@params['id'])

end
def update
@category = Category.find (@params|['category']['id'])
if @category.update_ attributes (@params|['category'])
flash['notice'] = 'Category was successfully updated.'
redirect to :action => 'show', :id => @category.id
else
render action 'edit'
end
end

def destroy
Category.find(@params['id']) .destroy
redirect to :action => 'list'
end
end

+ The default action for the controller is to render a template matching the name of the action — e.g. the 1ist
action will populate the @categories instance variable and then the controller will render "1ist.rhtml".

* render template allows you to render a different template — e.g. the index action will run the code for
list, and will then render 1ist.rhtml rather than index.rhtml (which doesn’t exist)

* redirect to goes one stage further, and uses an external “302 moved” HTTP response to loop back into
the controller — e.g. the destroy action doesn’t need to render a template. After performing its main purpose
(destroying a category), it simply takes the user to the 1ist action.

Documentation: ActionController::Base

The controller uses ActiveRecord methods such as find, find all, new, save, update attributes,and
destroy to move data to and from the database tables.

Documentation: ActiveRecord::Base

Notice how several of the actions are split into two. For example, when the user selects edit, the controller
extracts the record they want to edit from the model, and then renders the edit.view. When the user has finished
editing, the edit view invokes the update action, which updates the model and then invokes the show action.

Tailoring the default Controller

Personally, I don’t like the way Rails displays the show screen next — I prefer to go straight back to the 1ist
screen; the show screen isn’t necessary in this application. However, it would be nice to display a message to say
the edit has worked:

app\controllers\categories controller.rb (excerpt)
def update
@category = Category.find (@params['category']['id'])
if Qcategory.update attributes (@params|['category'])
flash['notice'] = 'Category was successfully updated.'
redirect to :action => 'list'
else
render action 'edit'
end
end

The flash message will be picked up and displayed on the next screen to be displayed — in this case, the 1ist
screen (see Tailoring the defanlt List’ View on page 12).

Documentation: ActionController::Flash

Curiously, although the flash message has its own css tag, the stylesheet produced by the generate scaffold
script doesn’t do anything special with it. This is solved by a simple addition:

Page 9

public\stylesheets\scaffold.css (excerpt)

.notice {
color: red;

}

The View

Views are where the user interface are defined. Rails can render the final HTML page presented to the user from
three hierarchical components:

Layout Template Partials
in app\views\layouts\ in app\views\<controller>\ in app\views\<controller>\
default: application.rhtml default: <action>.rhtml default <partial>.rhtml

of <controller>.rhtml

Layout

Rails Naming convention: if there is a template in app\views\layouts\ with the same name as the current
controller then it will be automatically set as that controller’s layout unless explicitly told otherwise.

A layout with the name application.rhtml or application.rxml will be set as the default controller if there
is no layout with the same name as the current controller and there is no layout explicitly assigned.

The layout generated by the scaffold script looks like this:
app\views\layouts\categories.rhtml

<html>
<head>

<title>Scaffolding: <%= controller.controller name %>#<%= controller.action_ name
$></title>

<link href="/stylesheets/scaffold.css" rel="stylesheet" type="text/css" />
</head>
<body>

<%= (@content for layout %>

</body>
</html>

This is mostly HTML, but there isn’t very much of it :-) The sections in bold are the key to the Rails rendering
process:

* controller name and action name are ActionController methods which return parts of the URL which
are displayed in the browser address bar.

Documentation: ActionController::Base

* @content for layout allows a single standard layout to have dynamic content inserted at rendering time
based on the action being performed (e.g. ‘edit’, ‘new’, ‘list’). This dynamic content comes from a template.

Documentation: ActionController::Layout::ClassMethods.

Templates

Rails naming convention: templates are held in app\views\categories\’action’ .rhtml. For example, the
edit.rhtml created by the scaffold script is given below:

app\views\categories\edit.rhtml

<hl1>Editing category</hl>

Page 10

<%= error messages_for 'category' %>

<%= form 'category', :action => 'update' %>
<%= link to 'Show', :action => 'show', :id => (@category.id %> |
<%= link to 'Back', :action => 'list' %>

This code for the ‘edit’ action is all that is required for Rails to render the complete HTML for an edit page. The
magic is all in the bold type:

Displaying Errors trapped by the Data Model

error_messages_for returns a string with marked-up text for any error messages produced by a previous
attempt to submit the form. If one or more errors is detected, the HTML looks like this:

<div class="errorExplanation" id="errorExplanation">
<h2>n errors prohibited this user from being saved</h2>
<p>There were problems with the following fields:</p>

field 1 error message 1</1i>
... ...</1li>
field n error message n

</div>

Note: the css tags match corresponding statements in the stylesheet created by the generate scaffold script.
Documentation: Action iew::Helpers::ActiveRecordHelper

Creating a Form with minimal coding

form is Rails at its most economical. Given an Active Record Object, it renders an entire form. The following
code:

<%= form 'category', :action => 'update' %>

will create all this HTML.:

<form action="/categories/update" method="post">
<input id="category_ id" name="category[id]" type="hidden" value="n" />
<p>
<label for="category category">Category</label>

<input id="category category" name="categoryl[category]" size="30"
type="text" value="y" />
</p>
<input type="submit" value="Update" /></form>

It’s not the prettiest user interface ever created, but it works, and you can’t get much quicker.
Documentation: Action iew::Helpers::ActiveRecordHelper

Creating Links

link_to simply creates a link — the most fundamental part of HTML...
Documentation: Action iew::Helpers::UrlHelper

Tailoring the default ‘Edit’ View

The default HTML produced by the form helper is functional, but if we want more control over the layout, we
need to take more control over the HTML by editing the rhtml file. In this example, we want to use a table to

line up the prompts for user input in front of the input boxes. This doesn’t mean abandoning the Rails toolbox
altogether:

app\views\categories\edit.rhtml

<hl>Rename Category</hl>

<%= error messages for 'category' %>

Page 11

<form action="/categories/update" method="post">
<%= hidden_field "category", "id" %>
<table>
<tr>
<td>Category:</td>
<td><%= text field "category", "category", "size" => 20, "maxlength" => 20
$></td>
</tr>
</table>
<hr />
<input type="submit" value="Update" />
</form>

<%= link to 'Cancel', :action => 'list' %>

hidden field, text field are quick ways to generate the corresponding HTML constructs.

Documentation: Action iew::Helpers::FormHelper

Tailoring the default ‘List’ View
aJ views\categories\list.rhtml

<hl>Categories</hl1>
<% if Q@flash["notice"] %>

<%= @flash["notice"] %>

<% end %>
<table>
<tr>
<th>Category</th>
<th>Created</th>
<th>Updated</th>
</tr>
<% for category in (@categories %>
<tr>
<td><%=h category["category"] %></td>
<td><%= category["created on"].strftime("$I:%M %p %d-%b-%y") $></td>
<td><%= category["updated on"].strftime ("$I:%M %p %d-%b-%y") %></td>
<td><%= link to 'Rename', :action => 'edit', :id => category.id $></td>
<td><%= link to 'Delete', { :action => 'destroy', :id => category.id }, :confirm
=> 'Are you sure you want to delete this category?' $></td>
</tr>
<% end %>
</table>

oe

<%= link to 'Add new category', :action => 'new' %>

Escaping HTML Characters

One of the problems with allowing users to input data which is then displayed on the screen is that they could
accidentally (or maliciously) type in code which could break the system when it was displayed. For example,
think what would happen if a user types in ‘</table>’ as a category.

To guard against this, it is good practice to html_escape any data which has been provided by users. This means
that e.g. </table> is rendered as </table> which is harmless.

Rails makes this really simple — just add an ‘h’
%=h category["category"] %>

Using Ruby to format Date and Time

I’'ve had to hard code this page manually so I can use a Ruby method strftime () to format the date and time
fields the way I want them.

Page 12

Ruby Documentation: class Time

Creating a Javascript confirmation Dialogue

Note also the use of a Javascript pop-up box in link to to :confirm the delete before processing:
Microsoft Internet E xplorer |

@ Are pou sure pou want ko delete thiz category?

Cancel |

Tllustration 3 Javascript Confirmation Dialogue

Documentation: Action iew::Helpers::UrlHelper

That takes us to the end of Day 2. We have a working system for maintaining our Categories table, and have
started to take control of the scaffold code which Rails has generated.

Page 13

Day 3 on Rails

Now it’s time to start on the heart of the application. The Items table contains the list of ‘todos’. Every Item
may belong to one of the Categories we created on Day 2. An Item optionally may have one Note, held in a
separate table, which we will look at tomorrow. Each table has a primary key ‘id’, which is also used to record
links between the tables.

Categories Items Notes
id - id . id
category_id
note_id

Let’s generate some more scaffold code. We’ll do this for both the Items table and the Notes table. We aren’t
ready to work on Notes as yet, but having the scaffold in place means we can refer to Notes in today’s coding
without generating lots of errors. Just like building a house — scaffolding allows you to build one wall at a time
without everything crashing around your eats.

W:\ToDo>ruby script/generate scaffold Item
W:\ToDo>ruby script/generate scaffold Note

Note: this will empty any previous item or note files without warning

The ‘Items’ Table

MySQL table defintion

The fields in the Items table are as follows:

+ done - 1 means the ToDo item has been completed*

+ priority — 1 (high priority) to 5 (low priority)

+ description — free text stating what is to be done

+ due_date — stating when it is to be done by

+ category_id — a link to the Category this item comes under (‘id” in the Categories table)
+ note_id — a link to an optional Note explaining this item (id” in the Notes table)

+ private — 1 means the ToDo items is classed as ‘Private’

Items table

CREATE TABLE items (
id smallint (5) unsigned NOT NULL auto increment,
done tinyint(l) unsigned NOT NULL default '0',
priority tinyint(l) unsigned NOT NULL default '3',
description varchar (40) NOT NULL default '',
due date date default NULL,
category id smallint (5) unsigned NOT NULL default '0',
note id smallint (5) unsigned default NULL,
private tinyint (3) unsigned NOT NULL default '0',
created on timestamp (14) NOT NULL,
updated on timestamp (14) NOT NULL,
PRIMARY KEY (id)

) TYPE=MyISAM COMMENT='List of items to be done';

The Model

a models\item.rb

class Item < ActiveRecord: :Base

4 MySQL doesn’t have a ‘boolean’ type, so we have to use 0/1

Page 15

belongs_to :category

validates_associated :category

validates format of :done_before type cast, :with => /[01]/, :message=>"must be 0 or
1"

validates_inclusion_of :priority, :in=>1..5, :message=>"must be between 1 (high) and
5 (low)"

validates_presence of :description

validates_length of :description, :maximum=>40

validates format of :private before type cast, :with => /[01]/, :message=>"must be 0
or 1" N - - N -
end

Validating Links between Tables

+ theuse of belongs_to and validates associated links the Items table with the item_id field in the
Category table.
Documentation: ActiveRecord::Associations::ClassMethods

Validating User Input

* validates_presence_of protects ‘NOT NULL fields against missing user input

* validates format of uses regular expressions to check the format of user input

+ when a user types input for a numeric field, Rails will always convert it to a number — if all else fails, a zero. If
you want to check that the user has actually typed in a number, then you need to validate the input
_before type cast, which lets you access the ‘raw’ input’.

+ validates_inclusion_ of checks user input against a range of permitted values

« validates length of prevents the user entering data which would be truncated when stored".

Documentation: ActiveRecord::Base

More on Views

Sharing Variables between the Templates and the Layout

By now; it is becoming obvious that all my templates will have the same first few lines of code, so it makes sense
to move this common code into the layout. Delete all the app\views\layouts*.rhtml files, and replace with
a common application.rhtml.

aJ views\layouts\application.rhtml

<html>
<head>
<title><%=h @heading %></title>
<link href="/stylesheets/ToDo.css" rel="stylesheet" type="text/css" />
</head>
<body>
<hl><%=h Q@heading $%$></hl>
<% if @flash["notice"] %>

<%= @flash["notice"] %>

<% end %>
<%= @Qcontent for layout %>
</body>
</html>

I've renamed the public/stylesheets/acaffold.css to ToDo.css for tidiness, and also generally played
with colours, table borders, to give a prettier layout. However, returning to Rails, note how the heading vatiable
is shared between the two files, which means that you can have content in the layout dynamically defined by a
template:

5 What might seem a more obvious alternative: validates inclusion of :done before type cast,
:in=>"0".."1", :message=>"must be between 0 and 1" — fails if the input field is left blank

6 You could however combine the two rules for the Description field into one: validates length of
:description, :within => 1..20

Page 16

app\views\items\edit.rhtml (excerpt)

<% Q@heading = "Edit To Do" %>
<%= error_messages_for 'item' %>

<%= form

'item', :action => 'update' %>

The ToDo List screen

What I'm trying to do is a look based on a PalmPilot or similar PDA desktop. The end product is shown in
Ilustration 4 Main "To Do' screen’.

Some points:

+ clicking on the ‘tick’ (#) column heading will putge all the completed items (those marked with a tick)

+ the display can be sorted by clicking on the ‘Pri’, ‘Description’, ‘Due Date’, and ‘Category’ column headings
+ the 0/1 values for ‘Done’ are converted into a little ‘tick’ icon

+ items past their due date are coloured red
+ the presence of an associated note is shown by ‘note’ icon

+ the 0/1 values for ‘Private’ are converted into a padlock symbol

+ individual items can be edited or deleted by clicking on the icons on the right of the screen
+ the display has a nice ‘stripey’ effect
+ new items can be added by clicking on the ‘New...” button at the bottom of the screen.

To Do List

[v || Pi || Description | DueDate || Category (B[&]

| v |1 |E-u~_,f roses & chocolatdSort by Description| |14HDEHDE |H|:|me 2 Family ‘ E | & EE
| |3 |5tart next section of documentation |1?,’DE,’DE |Rail5 documentatian ‘ | EE
| |5 |ﬁdd rew category button |19x’023’55 |Uf"ﬁ|'3'3j ‘ | EE
| |5 |.-’-'-.||I:IW 1-click updating |19,'“IZI2,.’DS |Rail5 documentation ‘ | EE
| |1 |Mcur'|thlﬁ_,f report for newspaper |2EI,-"EIE,-"DE |C|:|mmur'|itﬁ,r Council ‘ El | IEIE
| |1 |F‘|:|5t minutes on website |21;’IZIE,KDE |Cummunit}r Council ‘ | EE
| |5 |Get quotes for painting house |21fEIEfDE |H|:|me 8 Family ‘ | EE
| |3 |E-|:u:|k Holiday |29f'32f'35 |H|:|me B Family ‘ | EE
| |1 |Organise team meeting |le'33f'35 |E-U5i”'355 ‘ | EE
| |3 |E-u~_,f new Lottery Ticket |12f'33f'35 |E-U5i”955 ‘ | EE
| |5 |F'repare agenda for AGM |31fEISfDE |C|:|mmur'|it_,f Council ‘ | EE

Mew Ta Da... | Cateqaries

Tlustration 4 Main "To Do' screen

The template used to achieve this is built up as follows:

app\views\items\list.rhtml

<% @heading = "To Do List" %>
<form action="/items/new" method="post">
<table>

<tr>

<th><%= link_to_image "done",

{:controller =>

"purge completed"}, :confirm => "Are you sure you

completed To Dos?" %></th>

<th><%= link to image "priority", {:controller

'items', :action =>
want to permanently delete all

=> 'items', :action =>

7 It’s amazing what a few lines in a stylesheet can do to change the appearance of a screen, plus of course a collection of

icons...

Page 17

"list by priority"}, "alt" => "Sort by Priority" %$></th>

<th><%= link to image "description", {:controller => 'items',6 :action =>
"list by description"}, "alt" => "Sort by Description" $></th>

<th><%= link to image "due date", {:controller => 'items', :action => "list"},
"alt" => "Sort by Due Date" $></th>

<th><%= link to image "category", {:controller => 'items',6 :action =>
"list by category"}, "alt" => "Sort by Category" %></th>

<th><%= show_image "note" %></th>

<th><%= show image "private" %></th>

<th> </th>

<th> </th>

</tr>
<%= render collection of partials "list stripes", @items %>
</table>
<hr />
<input type="submit" value="New To Do..." />
<input type="button" value="Categories" onClick="parent.location='<%= url for (
:controller => 'categories', :action => 'list') %>'">
</form>

Purging completed ‘ToDos’ by clicking on an icon

Clickable images ate created by link to_ image, which by default expects to find an image in pub/images with
a .png suffix; clicking on the image will run the specified method®.

Adding in the : confirm parameter generates a javascript pop-up dialogue box as before.

Documentation: Action iew::Helpers::UrlHelper

Clicking ‘OK’ will invokes the purge completed method. This new purge completed method needs to be
defined in the controller:

app\controllers\items_controller.rb (excerpt)

def purge completed
Item.destroy all "done = 1"
redirect to :action => 'list'
end -

Item.destroy all deletes all the records in the Items table where the value of the field done is 1, and then
reruns the 1ist action.

Documentation: ActiveRecord::Base

Changing the Sort Order by clicking on the Column Headings

Clicking on the Pri icon invokes a 1ist_by priority method. This new list by priority method needs to
be defined in the controller:

app\controllers\items_controller .rb (excerpt)

def list
@items = Item.find all (nil, 'due date,priority')
end

def list by priority
@items = Item.find all (nil, 'priority,due date')
render action 'list'

end

We’ve specified a sort order for the default 1ist method, and created a new 1ist by priority method’.
Note: the first parameter in £ind all is for specifying conditions (the ‘WHERE’ clause in SQL) — we want all
the records returned here, so this parameter is ‘nil’.

8 Note how I've explicitly specified the controller here: link_to_image "done", {:controller => 'items', :action =>
"purge_completed"},.... The simpler form: link_to_image "done", "purge_completed",... would also work for now ... I'll
return to why I’'ve done this on Links on the Home Page on page 31)

9 1list by descriptionand list by category are similar and are left as an easy exercise for the reader.

Page 18

Documentation: ActiveRecord:-:Base

Note also that we need to explicitly render action 'list',as by default Rails would try to render a template
called 1ist by priority (which doesn’t exist :-)

Adding a Helper

The headings for the Note and Private columns are images, but are not clickable. I decided to write a little
method show image (name) to just show the image:

app\helpers\items helper.rb

module ItemsHelper
def self.append features (controller)
controller.ancestors.include? (ActionController: :Base) °?
controller.add template helper (self) : super
end

def show image (src)

img options = { "src" => src.include?("/") ? src : "/images/#{src}" }
img options["src"] = img options["src"] + ".png" unless
img options["src"].include?(".")
img options["border"] = "QO"
tag("img", img options)
end

end

Once this helper has been linked in by the controller:

app\controllers\items controller.rb (excerpt)

class ItemsController < ApplicationController
helper :Items
def index
list
render action 'list'
end

it is available for the template.

Documentation: Action dew::Helpers

Using Javascript Navigation Buttons

onClick is a standard Javascipt technique for handling button actions such as navigating to a new web page.
However, Rails goes to great lengths to rewrite pretty URLS, so we need to ask Rails for the correct URL to use.
Given amodule and an action url for will return the URL...

Documentation: ActionController::Base

Partials — sub-templates

I wanted to create a nice stripey effect for the list of items. Partials enable a section of formatting to be delegated
to a sub-template. They can either be invoked by the render partial method:

<% for item in Qitems %>
<%= render_partial "list stripes", item %>
<% end %>

ot by the more economical render collection of partials:
render collection of partials "list stripes", @items

Either code (another Rails naming convention here) will invoke a sub-template _1list stripes.rhtml and
pass to it the variable item.

Documentation: Actionl jew::Partials

Page 19

Rails also passes a sequential number 1ist stripes_counter to the sub-template. This is the key to formatting
alternate rows in the table with either a light grey background or a dark grey background. One way is simply to
test whether the counter is odd or even: if odd, use light gray; if even, use dark gray..

A sub-template looks very similar to a template:

app\views\items S_lis t stripes.rhtml

<tr class="<%= list stripes counter.modulo (2) .nonzero? *? "dk gray" : "lt gray" $>">
<td><%= list stripes["done"] == 1 ? show_image ("done_ico.gif") : " " %></td>
<td><%= list stripes|["priority"] $></td>
<td><%=h list stripes["description"] %></td>
<% if list stripes["due date"].nil? %>
<td> </td>
% else %>
<%= list stripes["due_date"] < Date.today ? '<td class="past due">' : "<td>" $><%=
list stripes["due date"].strftime ("%d/%m/Sy") %></td>
<% end %>

<td><%=h list_stripes.category ? list stripes.category["category"] : "Unfiled"
$></td>

<td><%= list stripes["note id"].nil? ? " " : show image ("note ico.gif")
$></td> N N - -

<td><%= list stripes["private"] == 1 ? show image ("private ico.gif") : " "
&></td>

<td><%= link to image("edit", { :controller => 'items',6 :action => "edit", :id =>
list stripes.id }) %></td>

<td><%= link to image ("delete", { :controller => 'items',6 :action => "destroy",
:id => list stripes.id }, :confirm => "Are you sure you want to delete this item?")
&></td> B
</tr>

A little bit of Ruby is used to test if the counter is odd or even and render either class="dk_gray” ot

class="1t gray”:
list stripes counter.modulo(2) .nonzero? ? "dk gray" : "1t gray"

the code as far as the first question mark asks: is #he remainder when you divide list_stripes_counter by 2 nongero?

Ruby Documentation: class Numeric

The remainder of the line is actually a cryptic #f #hen else expression which sacrifices readability for brevity: i #he
expression before the question mark is true, return the value before the colon; else return the value after the colon.

Ruby Documentation: Expressions

The two tags dk_gray and 1t_gray are then defined in the stylesheet:

public\stylesheets\ToDo.css (excerpt)

.1t gray { background-color: #eTele7; }
.dk_gray { background-color: #de6d7d6; }

Note: the same #f #hen else construct is used to display the ‘tick’icon if 1ist stripes["done"]equals 1,
otherwise display an HTML blank space character:

list stripes(["done"] == 1 ? show image ("done ico") : " "

Formatting based on Data Values

It’s also easy to highlight specific data items — for example, dates in the past.
list stripes["due date"] < Date.today ? '<td class="past due">' : '<td>'
Again, this needs a matching stylesheet entry.

Handling missing Values in a Lookup

We want the system to be able to cope with the situation where the user deletes a Category which is in use by
ToDo items. In this case, the Category should be displayed as ‘Unfiled”:

list stripes.category ? list stripes.category["category"] : 'Unfiled'

Page 20

The New ToDo Screen

Turning next to what happens when the ‘New To Do..” button is pressed. Again, there are few new tricks

lurking in the code.

New To Do

Description: I
Date due: ||2005 x| |2 =] |23 =]
Cateqory: || Home and Family j
Priority: ||3j

|Priuate? ||_

|Cnmp|ete? ||_

Savel Cancel |

Tllustration 5 New "To Do' screen

app\views\items\new.rhtml

<% @heading = "New To Do" %>
<%= error_messages_for 'item' %>
<form action="/items/create" method="post">
<table>
<tr>
<td>Description: </td>
<td><%= text field "item", "description", "size" => 40, "maxlength" => 40

$></td>
</tr>
<tr>

<td>Date due: </td>
<td><%= date_select "item", "due date", :use month numbers => true %></td>
</tr>
<tr>
<td>Category: </td>
<td><select id="item category id" name="item[category id]">
<%= options_from collection_ for select (categories, "id", "category",
@item.category id %>
</select>
</td>
</tr>
<tr>
<td>Priority: </td>
<% @item.priority = 3 %>
<td><%= select "item","priority",[1,2,3,4,5] %></td>
</tr>
<tr>
<td>Private? </td>
<td><%= check box "item", "private" %></td>
</tr>
<tr>
<td>Complete? </td>
<td><%= check box "item", "done" %></td>
</tr> N
</table>
<hr />
<input type="submit" value="Save" />

=> 'list') %>'"">

<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action

Page 21

| </form>

Creating a Drop-down List for a Date Field

date_select generates a rudimentary drop-down menu for date input:
| date select "item", "due date", :use month numbers => true

Documentation: Actioniew::Helpers::DateHelper

Unfortunately it quite happily accepts dates like 31% February. Rails then dies when it tries to save this ‘date’ to
the database. One workround is to trap this failed save using rescue, a Ruby exception handling method

app\controllers\items_controller.rb (excerpt)

def create
begin
@item = Item.new (@params['item'])
if @item.save

flash['notice'] = 'Item was successfully created.'
redirect to :action => 'list by priority’
else

@categories = Category.find all
render action 'new'

end

rescue
flash['notice'] = 'Item could not be saved.'
redirect to :action => 'new'

end

end
Ruby Documentation: Exceptions, Catch, and Throw

Creating a Drop-down List from a Lookup Table

This is another example of Rails solving an everyday coding problem in an extremely economical way. In this
example:
options from collection for select Qcategories, "id", "category", @item.category id

options from collection for select reads all the records in categories and renders them as <option
value="[value of id]"”>[value of category]</option>. The record that matches @item category id
will be tagged as ‘selected’. As is this wasn’t enough, the code even html_escapes the data for you. Neat.

Documentation: Action iew::Helpers::FormOptionsHelper

Creating a Drop-down List from a List of Constants

This is a simpler version of the previous scenario. Hard-coding lists of values into selection boxes isn’t always a
good idea — it’s easier to change data in tables than edit values in code. However, there are cases where it’s a
perfectly valid approach, so in Rails you do:

select "item","priority",I[1,2,3,4,5]

Note also how to set a default value in the previous line of code.

Documentation: Action Gew::Helpers::FormOptionsHelper

Creating a Checkbox

Another regular requirement; another helper in Rails:

check box "item","private"

Documentation: Action iew::Helpers::FormHelper

Controller

Data driven drop down boxes have to get their data from somewhere — which has to be the controller

Page 22

app\controllers\items_controller .rb (excerpt)

def new
@categories = Category.find all
@item = Item.new N
end

Finishing Touches

Tailoring the Stylesheet

At this point, the ToDo List screen should work, and so should the New ToDo button. To produce the screens
shown here, I also made the following changes to the stylesheet:

public\stylesheets\ToDo.css
body { background-color: #cé6c3c6; color: #333; }

hl {
font-family: verdana, arial, helvetica, sans-serif;
font-size: l4pt;
font-weight: bold;

}

table {

background-color: #e7e7e7;

border: outset 1lpx;
border-collapse: separate;
border-spacing: 1lpx;

}

td { border: inset 1lpx; }
.notice {

color: red;

background-color: white;
}
.1t gray { background-color: #e7e7e7; }
.dk_gray { background-color: #d6d7d6; }
.hightlight gray { background-color: #4a9284; }
.past_due { color: red }

The Edit ToDo Screen

The rest of Day 3 is taken up building the Edit ToDo screen, which is very similar to the New ToDo. I used to
get really annoyed with college text books which stated: #his is left as an easy exercise for the reader, so now it’s great to
be able to do the same to you.

Which takes us to the end of Day 3 — and the application now looks nothing like a Rails scaffold, but under the
surface, we’re still using a whole range of Rails tools to make development easy.

10 But unlike my college text book authors, I do reveal the answers on Day 4 :-) - see app\views\items\edit.rbimi on page 26

Page 23

Day 4 on Rails
The ‘Notes’ table

The Model

This table contains a single free text field to hold further information for a particular ToDo Item. This data
could of course have been held in a field on the Items table; however, if you do it this way you’ll learn a lot
morte about Rails :-)

Notes table

CREATE TABLE notes (
id smallint (6) NOT NULL auto_increment,
more notes text NOT NULL,
created on timestamp(14) NOT NULL,
updated on timestamp (14) NOT NULL,
PRIMARY KEY (id)
) TYPE=MyISAM COMMENT='Additional optional information for to-dos';

The model contains nothing new.
app\models\note.rb

class Note < ActiveRecord: :Base
validates presence of :more notes
end

but we need to remember to add this link into the Items model:
aJ models\item.rb (excerpt

class Item < ActiveRecord: :Base
belongs to :note

Using a Model to maintain Referential Integrity

The code we are about to develop will allow a user to add one Note to any Item. But what happens when a user
deletes an Item which has an associated Note? clearly, we need to find a way of deleting the Note record too,
otherwise we get left with ‘orphaned’ Notes records.

In the Model / View / Controller way of doing things, this code belongs in the Model. Why? well, we can delete
Item records by clicking on the Dustbin icon on the ToDo’ screen, but we can also delete them by clicking on
Purge completed items. By putting the code into the Model, it will be run regardless of where the delete action
comes from.

aj models\item.rb (excerpt

def before destroy
unless note id.nil?
Note.find(note id) .destroy
end
end

This reads: before you delete an Item record, find the record in Notes whose id equals the value of Note_id in
the Item record you are about to delete, and delete it first. Unless there isn’t one :-)"!

Documentation: ActiveRecord::Callbacks

The Views

Transferring the User between Controllers

Although the Notes scaffold code gives the full CRUD facilities, we don’t want the user to invoke any of this
directly. Instead, Notes can be created by clicking on the Notes button on the Edit ToDo screen:

11

Page 25

Edit To Do

|Desc:riptiun: ||Add new categony button

Date due: |[2005 =] [2 =] [13 7]

|Categurv: ||T|:|D|:| Application j |5%

|Priurity: ||5j

|Priuate? ||_

|Cump|ete? ||_ P

|Nutes: |N|:|ne {| B
\--—--

Update | Cancel |

Tllustration 6: Creating a New Note from the Edit ToDo screen

and once a Note has been created, it can be edited or removed by clicking on the appropriate button:

Edit To Do

‘Descriptiun: ||Eiuy roses & chocolates

pate due: 2005 =] [2 =] [14 7]

‘Categur\;: |H|:|me & Family j Iﬁl
‘Priuritv: ||1 j

‘Priuate? ||_

‘Cumplete? ||7 o
‘Nutes: |Ha\.re to be Thorntons! |ﬁ|” L})

Update | Cancel |

Illustration 7: Editing or Deleting an existing Note

First of all, let’s look at the code for the Edit ToDo screen. Note how the Notes buttons change according to
whether a Note already exists, and how control is transferred to the Notes controller:

a views\items\edit.rhtml

<% @heading = "Edit To Do" %>
<%= error messages for 'item' 3>
<form action="/items/update" method="post">
<%= hidden field "item", "id" %>
<table>
<tr>
<td>Description: </td>
<td><%= text field "item", "description", "size" => 40, "maxlength" => 40
S></td>
</tr>
<tr>
<td>Date due: </td>
<td><%= date select "item", "due date", :use month numbers => true $></td>
</tr>
<tr>
<td>Category: </td>
<td>
<select id="item category id" name="item[category id]">
<%= options from collection for select (@categories, "id", "category",
@item.category id %>
</select>

Page 26

</td>
<td>
<%= link to image 'edit button', :controller => 'categories',6 :action =>
'list' %>
</td>
</tr>
<tr>
<td>Priority: </td>
<td><%= select "item","priority",I[1,2,3,4,5] $></td>
</tr>
<tr>
<td>Private? </td>
<td><%= check box "item","private" $></td>
</tr>
<tr>
<td>Complete? </td>
<td><%= check box "item", "done" $></td>
</tr>
<tr>
<td>Notes: </td>
<% if @item.note_id.nil? %>
<td>None</td>
<td><%= link to image "note", :controller => "notes", :action => "new", :id =>
@item.id %></td>
<% else %>
<td><%=h Qitem.note.more notes %$></td>
<td><%= link to image "edit button", :controller => "notes", :action => "edit",
:id => Qitem.note id %$></td>
<td><%= link to image "delete button", {:controller => "notes", :action =>
"destroy", :id => @item.note id }, :confirm => "Are you sure you want to delete this
note?" %$></td>
<% end %>
</tr>
</table>
<hr />
<input type="submit" value="Update" />
<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action
=> 'list') %>'"> B
</form>

But before moving to the Notes screen, remember we need to make sure the variable for the dropdown list is
populated any time we invoke the Edit screen:

app\controllers\items controller.rb (excerpt)

def edit
@categories = Category.find all
@item = Item.find (@params['id'])
end

def update
@item = Item.find(@params|['item']['id'])
if @item.update attributes (@params['item'])
flash['notice'] = 'Item was successfully updated.'
redirect to :action => 'list'
else
flash['notice'] = 'Item NOT updated.'
redirect to :action => 'list'
end
end

Editing an existing Note is easy:
app\views\notes\edit.rhtml

<% @heading = "Edit Note" %>
%= error messages for 'note' 3%>
<form action="/notes/update" method="post">
<%= hidden field "note", "id" %>
<table>
<tr>
<td>Note:</td>

A

Page 27

</tr>

<tr>
<td><%= text area "note", "more notes", "cols" => 60, "rows" => 20 $></td>
</tr>
</table>
<hr />

<input type="submit" value="Update" />

<input type="button" value="Cancel" onClick="parent.location='<%= url for(
:controller => 'items', :action => 'list') %>'">
</form>

and once the update or destroy of the Notes table is complete, we want to return to the ToDo List screen:

app\controllers\notes_controller.rb (excerpt)

def update
@note = Note.find(@params|['note']['id'])
if @note.update attributes (@params['note'])
flash['notice'] = 'Note was successfully updated.'
redirect to :controller => 'items',6 :action => 'list'
else
render action 'edit'
end
end

def destroy
Item.find by note id(@params['id']).update attribute ('note id',6 NIL)

Note.find?@params['id‘]).destroy
redirect to :controller => 'items',6 :action => 'list'
end

Saving and retrieving Data using Session Variables

However, the create is a bit more tricky. What we want to do is:

« store the new note in the Notes table
+ find the id of the newly created record in the Notes table
« record this id back in the notes_id field of the associated record in the Items table

First of all, when we go off to create the new Notes record, we pass the id of the Item we are editing:

app\views\items\edit.rhtml (excerpt)
<td><%= link to image "note", :controller => "notes", :action => "new", :id =>
Qitem.id %></td>

The new method in the Notes controller stores this away in a session variable:

app\controllers\notes controller.rb (excerpt)

def new
@session['item id'] = @params['id']
@note = Note.new

end

The New Notes template has no surprises:

<% Rheading = "New Note" %>

<%= error messages_ for 'note' %>
<form action="/notes/create" method="post">
<%= hidden field "note", "id" %>
<table>
<tr>
<td>Note:</td>
</tr>
<tr>
<td><%= text area "note", "more notes", "cols" => 60, "rows" => 15 $></td>
</tr>
</table>
<hr />

Page 28

<input type="submit" value="Save" />

<input type="button" value="Cancel" onClick="parent.location='<%= url for(
:controller => 'items', :action => 'list') %>'">
</form>

The create method retrieves the session variable again and uses it to find the record in the Items table. It then
updates the note_id in the Item table with the id of the record it has just created in the Note table, and returns
to the Items controller again:

app\controllers\notes_controller.rb (excerpt)

def create
@note = Note.new (@params|['note'])
if @note.save
flash['notice'] = 'Note was successfully created.'
@item = Item.find(@session['item id'])
@item.update attribute('note id', @note.id)
redirect to :controller => 'items', :action => 'list'
else
render action 'new'
end
end

Documentation: ActionController::Base

Tidying up Navigation
There isn’t a great deal left to do on the system now, other than tidy up the templates created in earlier days and
adding in navigation buttons:

a views\categories\list.rhtml

<% @heading = "Categories" %>
<form action="/categories/new" method="post">
<table>
<tr>
<th>Category</th>
<th>Created</th>
<th>Updated</th>
</tr>
<% for category in @categories %>
<tr>

<td><%=h category["category"] $%$></td>
<td><%= category["created on"].strftime ("$I:%M %p %$d-%b-%y") %$></td>
<td><%= category["updated on"].strftime ("$I:%M %p %$d-%b-%y") %></td>

<td><%= link to image 'edit', { :action => 'edit', :id => category.id } $></td>
<td><%= link to image 'delete', { :action => 'destroy', :id => category.id },
:confirm => 'Are you sure you want to delete this category?' $></td>
</tr>
<% end %>
</table>
<hr />
<input type="submit" value="New Category..." />

<input type="button" value="To Dos" onClick="parent.location='<%= url for(
:controller => 'items', :action => 'list') %>'">
</form>

app\views\categories\new.rhtml

<% @heading = "Add new Category" %>
<%= error messages for 'category' %>
<form action="/categories/create" method="post">
<table>
<tr>

<td>Category:</td>
<td><%= text field "category", "category", "size" => 20, "maxlength" => 20
$></td>
</tr>
</table>
<hr />
<input type="submit" value="Save" />

Page 29

<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action
=> 'list') %>'">
</form>

app\views\categories\edit.rhtml

<% @heading = "Rename Category" %>
<%= error messages for 'category' %>
<form action="/categories/update" method="post">
<%= hidden field "category", "id" %>
<table>
<tr>
<td>Category:</td>
<td><%= text field "category", "category", "size" => 20, "maxsize" => 20 $></td>
</tr>
</table>
<hr />
<input type="submit" value="Update" />
<input type="button" value="Cancel" onClick="parent.location='<%= url for(:action
=> 'list') &>'"> a
</form>

The final navigation paths through the application are shown below. Any redundant scaffold code — e.g. the
show.rhtml files — can be simply deleted. That’s the beauty of scaffold code — it didn’t cost you any effort to
code it in the first place, and once it’s served its purpose, just get rid of it.

New
ToDo
New
Category
4 New
4 Note
List
Categories
Edit
. Note
ToDo
Edit
Category

Hlustration 8 Navigation paths through the Application

Setting the Home Page for the Application
As a final step, we need to kill the default "Welcome to Rails' screen if the user points their browser to
http://todo. There are three steps:

+ change the Apache rewrite rule:

public\.htaccess (excerpt)

Enable this rewrite rule to point to the controller/action that should serve root.
RewriteRule ~$ /controller/action [R]
RewriteRule ”~$ /items/list

Page 30

. rename public\index.html public\index.html.orig

+ point your browser to http://todo

Note: Rails 0.10 introduced Routzes — a native Rails technique for working with custom URLs. If you are using
0.10 or above, you need to add the home page definition in the new Routes file:

config\routes.rb (excerpt

map.connect '', :controller => 'items', :action => 'list'

Links on the Home Page

There’s a little Rails gofcha to watch out for here. When you access the items/1list screen using this shortcut
URL, Rails loses the plot a bit. If you use the simple form of 1ink to—e.g link to_image "done",

"purge completed", ... — then you'll find the links don’t work any more. However, if you explicitly specify
the controller — e.g. 1ink to image "done", {:controller => 'items', :action =>

'purge completed'}, ... — then everything works. You only need to worry about this on the your home page
(both template and partials) — once you navigate away from the home page, then the system gets “back on the
rails” again :-)

Downloading a Copy of this Application
If youd like a copy of the ToDo application to play with, there’s a link on http://rails.homelinux.org. You’ll

need to

+ use Rails to set up the directory structure (see Running the Rails script on page 3)
« download the todo_app.zip file into the newly created ToDo directory

« unzip the files unzip -o todo app.zip

. rename public\index.html public\index.html.orig

+ if you want to use the sample database, mysql -uroot -p < db/ToDo.sql

and finally

I hope you found this document useful — I’'m always happy to receive feedback, good or bad, to
jpmcc@users.sourceforge.net.

Happy coding with Rails!

Page 31

mailto:jpmcc@users.sourceforge.net?subject=Feedback on Four Days on Rails
http://rails.homelinux.org/
http://todo/

Index of Rails and Ruby Terms used in this Document

A

ACHON__NAMIC.iiviiiriirreereeereeereesreeseessseesssesssesssessssessanes 10
B

before_type_Cast......ciiiiiniiiineirieiiieieeeienenes 16
DElONGS_T0.evuivrrieinieeiirereieeeieneieneieeeieese e nene 16
C

CHECK DOX ittt ettt e e e e e eeeeeeeaes 22
CONTITIM .ottt enens 13,18
content_for_ layout......cecrercerenerreeereerreerseeeseens 10
CONLIOLEr NAMIEC...iiviieeieeerieeeeereee ettt e et sreserenes 10
CLEALEA ALuueiurieiireereeeeeeteereeeeeeeeeteeeeeseeeseeeueeeessesseesneessesaes 5
CLEALEA_Ofuiiiviieiieiieieeeeeeeeeeeeeeeeer et eeaesetessteesessesssssesanens 5
D

AAtE_SELECT...cviiriiricricticticectecrecrece ettt 22
ESLEOY ettt 9
deStroy_all.....cuveciecieieciccce s 18
development.log. ... 3
E

CITOr_MESSAZES_FOT v 11
F

BN ettt 9
FINA ALttt ettt eae e 9,18
1SNttt ettt 9
FOT Mttt ettt ettt et et ettt ereere et eres 11
H

ettt ettt eae e erens 12
hidden_field......oooevivieriveieeiececeeeeeeeeee e 12
I

Ittt ettt ettt rereenen 4
L

LK _TO.titieretiereiereeereeereeeee ettt 11, 13, 31

HNK_tO_IMAGE...vmirernirerirreeciriecireeireeree e eeeeeeenaees 18
JOCK _VELSION. .c.ictietictietictecteeteeteeteeree ettt ve et eveerens 5
N

TLEW reutereresessessessessesessessessesesessassansensassansensansasessansensansansan 9
O

options_from_collection_for_select.........cccvururiunuenee. 22
R

LEAILECE TO.cuutireeereeteeeeeeeeeeeeeteeteeseeetestessesesesreessesseesaeesnesans 9
render_collection_of_partials.......c.ccccveecureemricenicennnnes 19
render_partial........ccocvcviciiiciiineinieiee e 19
render_temPlate......cviueiurecerieirecieceeeee s 9
TESCUR eeueereereereereereereereeseeseesessessessessessessessessessessessessensensenes 22
S

SAVCorrrereereereeereeseessesseesseessesseesseessesseesseesseseessenssesesssenseenns 9
SELECT. ettt ettt ettt b b aens 22
$€SSI0N VATIADle.. ..ot 28
SEEFHITIC v evievevieretccteeeereeet ettt r e s b et e s s eaens 12
T

EEXE_FICLA taviieeeeeeeee ettt ettt s e eaeas 12
U

update_attribULES.....ccuveuiericeieereeee e 9
UPAALEA_ALeceuvrnernereincireneirecireeireee e eeseenees 5
UPAAtEd_OMN. s 5
LD FO ettt et e e e esaeseeeseaees 19
A%

validates_associated.......ovvvivrierieriereereereeeeeeeeereeeereerenens 16
validates_format._ Of ..oceeveeeeeeeeeeieeeeeeeeeeeeeeeeee e 16
validates_inclusion_of.......ccccevevevecveceeeceeeceeeeeenne, 16
validates_length_ of ..o 7,16
validates_presence_of......ovcrreverreccunevenneenneeeneaes 16
validates_uniqueness_of........cccoevvinivinivininiinicnninnn. 7

Page 33

	Introduction
	Day 1 on Rails
	The ToDo List application
	Running the Rails script
	Adding the Application to the Web Server
	Defining the Application in the hosts file
	Defining the Application in the Apache Configuration file
	Switching to fastcgi
	Checking that Rails is working

	Setting up the Database
	Creating the Categories Table
	MySQL definition
	Data Model

	Scaffold

	Day 2 on Rails
	The Model
	Creating Data Validation Rules

	The Controller
	The default Controller
	Tailoring the default Controller

	The View
	Layout
	Templates
	Displaying Errors trapped by the Data Model
	Creating a Form with minimal coding
	Creating Links

	Tailoring the default ‘Edit’ View
	Tailoring the default ‘List’ View
	Escaping HTML Characters
	Using Ruby to format Date and Time
	Creating a Javascript confirmation Dialogue

	Day 3 on Rails
	The ‘Items’ Table
	MySQL table defintion
	The Model
	Validating Links between Tables
	Validating User Input

	More on Views
	Sharing Variables between the Templates and the Layout
	The ToDo List screen
	Purging completed ‘ToDos’ by clicking on an icon
	Changing the Sort Order by clicking on the Column Headings
	Adding a Helper
	Using Javascript Navigation Buttons
	Partials – sub-templates
	Formatting based on Data Values
	Handling missing Values in a Lookup

	The New ToDo Screen
	Creating a Drop-down List for a Date Field
	Creating a Drop-down List from a Lookup Table
	Creating a Drop-down List from a List of Constants
	Creating a Checkbox

	Controller
	Finishing Touches
	Tailoring the Stylesheet
	The Edit ToDo Screen

	Day 4 on Rails
	The ‘Notes’ table
	The Model
	Using a Model to maintain Referential Integrity

	The Views
	Transferring the User between Controllers
	Saving and retrieving Data using Session Variables

	Tidying up Navigation
	Setting the Home Page for the Application
	Links on the Home Page

	Downloading a Copy of this Application
	and finally

